4,372 research outputs found

    Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies

    Get PDF
    Using linkage analysis and whole-exome sequencing, Safka Brozkova et al. reveal missense mutations in the histidyl-tRNA synthetase gene in 23 patients from four families with axonal and demyelinating neuropathies of varying severity. The mutations cause loss of function in yeast complementation assays and neurotoxicity in a C. elegans mode

    Knockdown of the C. elegans kinome identifies kinases required for normal protein homeostasis, mitochondrial network structure, and sarcomere structure in muscle

    Get PDF
    Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation

    Modelling the functional genomics of Parkinson’s disease in Caenorhabditis elegans: LRRK2 and beyond

    Get PDF
    For decades, Parkinson’s disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes

    Light-microscopy methods in C. elegans research

    Get PDF
    Ever since Caenorhabditis elegans was introduced as a model system it has been tightly linked to microscopy, which has led to significant advances in understanding biology over the last decades. Developing new technologies therefore is an essential part in the endeavor to gain further mechanistic insights into developmental biology. This review will discuss state-of-the-art developments in quantitative light microscopy in the context of C. elegans research as well as the impact these technologies have on the field. We will highlight future developments that currently promise to revolutionize biological research by combining sequencing-based single-cell technologies with high-resolution quantitative imaging

    Identifying Prototypical Components in Behaviour Using Clustering Algorithms

    Get PDF
    Quantitative analysis of animal behaviour is a requirement to understand the task solving strategies of animals and the underlying control mechanisms. The identification of repeatedly occurring behavioural components is thereby a key element of a structured quantitative description. However, the complexity of most behaviours makes the identification of such behavioural components a challenging problem. We propose an automatic and objective approach for determining and evaluating prototypical behavioural components. Behavioural prototypes are identified using clustering algorithms and finally evaluated with respect to their ability to represent the whole behavioural data set. The prototypes allow for a meaningful segmentation of behavioural sequences. We applied our clustering approach to identify prototypical movements of the head of blowflies during cruising flight. The results confirm the previously established saccadic gaze strategy by the set of prototypes being divided into either predominantly translational or rotational movements, respectively. The prototypes reveal additional details about the saccadic and intersaccadic flight sections that could not be unravelled so far. Successful application of the proposed approach to behavioural data shows its ability to automatically identify prototypical behavioural components within a large and noisy database and to evaluate these with respect to their quality and stability. Hence, this approach might be applied to a broad range of behavioural and neural data obtained from different animals and in different contexts

    Genome-wide variations in a natural isolate of the nematode Caenorhabditis elegans

    Get PDF
    Background Increasing genetic and phenotypic differences found among natural isolates of C. elegans have encouraged researchers to explore the natural variation of this nematode species. Results Here we report on the identification of genomic differences between the reference strain N2 and the Hawaiian strain CB4856, one of the most genetically distant strains from N2. To identify both small- and large-scale genomic variations (GVs), we have sequenced the CB4856 genome using both Roche 454 (~400 bps single reads) and Illumina GA DNA sequencing methods (101 bps paired-end reads). Compared to previously described variants (available in WormBase), our effort uncovered twice as many single nucleotide variants (SNVs) and increased the number of small InDels almost 20-fold. Moreover, we identified and validated large insertions, most of which range from 150 bps to 1.2 kb in length in the CB4856 strain. Identified GVs had a widespread impact on protein-coding sequences, including 585 single-copy genes that have associated severe phenotypes of reduced viability in RNAi and genetics studies. Sixty of these genes are homologs of human genes associated with diseases. Furthermore, our work confirms previously identified GVs associated with differences in behavioural and biological traits between the N2 and CB4856 strains. Conclusions The identified GVs provide a rich resource for future studies that aim to explain the genetic basis for other trait differences between the N2 and CB4856 strains

    Residual ground-water levels of the neonicotinoid thiacloprid perturb chemosensing of Caenorhabditis elegans

    Get PDF
    © 2017, The Author(s). This study investigated the neurological effects of residual ground-water levels of thiaclopridon the non-target organism Caenorhabditis elegans. Nematodes treated with thiacloprid showed a dose-dependent and significantly increased twitch response at concentrations above 50 ng mL−1 that disabled their forward locomotion in liquid culture. In comparison with untreated controls, 10 ng mL−1 thiacloprid perturbed the chemosensory ability of C. elegans such that the nematodes no longer demonstrated positive chemotaxis towards a NaCl chemo-attractant, reducing their chemotaxis index from +0.48 to near to zero. Nematodes also exhibited a locomotion characteristic of those devoid of chemo-attraction, making significantly more pirouetting turns of ≥90° than the untreated controls. Compared to the untreated controls, expression of the endocytosis-associated gene, Rab-10, was also increased in C. elegans that had developed to adulthood in the presence of 10 ng mL−1 thiacloprid, suggesting their active engagement in increased recycling of affected cellular components, such as their nAChRs. Thus, even residual, low levels of this less potent neonicotinoid that may be found in field ground-water had measurable effects on a beneficial soil organism which may have environmental and ecological implications that are currently poorly understood

    Pollutants Corrupt Resilience Pathways of Aging in the Nematode C. Elegans

    Get PDF
    Delaying aging while prolonging health and lifespan is a major goal in aging research. One promising strategy is to focus on reducing negative interventions such as pollution and their accelerating effect on age-related degeneration and disease. Here, we used the short-lived model organism C. elegans to analyze whether two candidate pollutants corrupt general aging pathways. We show that the emergent pollutant silica nanoparticles (NPs) and the classic xenobiotic inorganic mercury reduce lifespan and cause a premature protein aggregation phenotype. Comparative mass spectrometry revealed that increased insolubility of proteins with important functions in proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The presented data demonstrate that pollutants corrupt intrinsic aging pathways. Reducing pollution is, therefore, an important step to increasing healthy aging and prolonging life expectancies on a population level in humans and animals

    Powerful and interpretable behavioural features for quantitative phenotyping of C. elegans

    Get PDF
    Behaviour is a sensitive and integrative readout of nervous system function and therefore an attractive measure for assessing the effects of mutation or drug treatment on animals. Video data provide a rich but high-dimensional representation of behaviour, and so the first step of analysis is often some form of tracking and feature extraction to reduce dimensionality while maintaining relevant information. Modern machine-learning methods are powerful but notoriously difficult to interpret, while handcrafted features are interpretable but do not always perform as well. Here, we report a new set of handcrafted features to compactly quantify Caenorhabditis elegans behaviour. The features are designed to be interpretable but to capture as much of the phenotypic differences between worms as possible. We show that the full feature set is more powerful than a previously defined feature set in classifying mutant strains. We then use a combination of automated and manual feature selection to define a core set of interpretable features that still provides sufficient power to detect behavioural differences between mutant strains and the wild-type. Finally, we apply the new features to detect time-resolved behavioural differences in a series of optogenetic experiments targeting different neural subsets
    • …
    corecore